close x
download

Brochure

Enter Your Info Below And We Will Send
You The Brochure To Your Inbox!

aibotics go-ditial brochure (en)

Thank you!
Your submission has been received!

Oops! Something went wrong while submitting the form

brochure
News

Will Quantum Computing Define The Future Of AI?

Sejuti Das, Analytics India Magazine
14.3.2020

TensorFlow Quantum (TFQ) will bridge that gap and will make it possible for developers/users to create hybrid AI algorithms combining both traditional and quantum computing techniques.

Google, this week, has launched a new version of their TensorFlow framework — TensorFlow Quantum (TFQ), which is an open-source library for prototyping quantum machine learning models.

Quantum computers aren’t mainstream yet; however, when they do arrive, they will need algorithms. So, TFQ will bridge that gap and will make it possible for developers/users to create hybrid AI algorithms combining both traditional and quantum computing techniques. TFQ, a smart amalgamation of TensorFlow and Cinq, will allow users to build deep learning models to run on a future quantum computer with minimal lines of Python.

According to the Google AI blog post, TFQ has been designed to provide the necessary tools to bring in the techniques of quantum computing and machine learning research communities together in order to build and control natural and artificial quantum systems. e.g. Noisy Intermediate Scale Quantum (NISQ) processors with ~50 – 100 qubits.

The purpose of quantum computing is to aid and extend the abilities of traditional computing. Quantum computers are designed to perform tasks much more accurately and efficiently than conventional computers, providing developers with a new tool for specific applications. It is believed that quantum computers will not replace their traditional counterparts; instead, they will require classical computers to support their specialised abilities, such as systems optimisation.

How Quantum Computing Can Benefit Artificial Intelligence

For decades, scientists have focused on bettering software to run increasingly complex programs; however, there are limitations to software optimisation. And, therefore, sooner or later, businesses will need more powerful machines to meet their requirements.

And, therefore, researchers are trying to figure out a way to expedite this process of extracting value from the unmanageable swaths of data; given rise to a new discipline that has been dubbed as Quantum Machine Learning. In fact, as per a report, by 2024, the overall quantum computing will grow to USD 283 million at a CAGR of 24.9% from USD 93 million in 2019.

According to Samuel Fernández Lorenzo, a quantum algorithm researcher, “Quantum machine learning can be more efficient than classic machine learning, at least for certain models that are intrinsically hard to learn using conventional computers.” However, “We still have to find out to what extent do these models appear in practical applications.”

Here are a few ways quantum computing could change the future of artificial intelligence:

Handling Large Datasets

Newer technologies like machine learning and AI eat a lot of data, and that is why it becomes difficult for traditional computers to evaluate such massive datasets. Quantum computers, on the other hand, are designed to manage the huge amount of data, along with uncovering patterns and spotting anomalies extremely quickly. With each newly launched iteration of quantum computer design and the new improvements made on the quantum error-correction code, developers are now able to better manage the potential of quantum bits. Apart from sampling large datasets, another way quantum computing will facilitate a revolution will be to optimise the same for solving all kinds of business problems. Quantum computers provide immense power to businesses and their consumers in order to make better decisions, and that’s why prominent companies agreed to invest in the new technology.

Solve Complex Problem Quickly

With the growing size of our data sets faster than our computing resources, for obvious reasons, businesses understand that quantum computers can complete calculations within seconds, which would take today’s computers many years to calculate. Traditional computers are programmed with bits in zeros (0) and ones (1) as data units; however, quantum computers use “qubits” — representing a combination of both zero and one at the same time, based on a principle called superposition. Because of this difference, quantum computers are exponentially faster than classical computers.

With quantum computing, developers can do multiple calculations with multiple inputs simultaneously. For instance, Google’s quantum computer claims to calculate 100 million times faster than any of today’s systems. Such a fast system is critical to process the monumental amount of data that businesses generate on a daily basis, and the fast calculation can be used to solve very complex problems. The key is to translate real-world problems that companies are facing into quantum language.

Building Better Models

With the increasing amount of data generated in industries like pharmaceutical, finance and life science industry, companies are losing their ties with classical computing rope. To have a better data framework, these companies now require complex models that have the potential processing power to model the most complex situations. And that’s where quantum computers play a huge role. Creating better models with quantum technology will lead to better treatments for diseases in the healthcare sector can decrease financial implosion in the banking sector and improve the logistics chain in the manufacturing industry.

Integration Of Multiple Datasets

One of the core problems faced by an organisation is the amount of data provided — either it could be too much or sometimes not enough, and many a time the data is placed in a variety of datasets. To manage and integrate multiple numbers of datasets, quantum computers can be used, which makes the process quicker, and also makes the analysis easier. So for businesses, quantum computers will allow for quick analysis and integration of large datasets which, in turn, improves and transforms the machine learning and artificial intelligence capabilities. The ability to handle so many stakes makes quantum computing an adequate choice for solving business problems in a variety of fields.

Read the full story and more related stories on Analytics India Magazine

...
more posts